

Annual Report For the 2023 Operating Year

Wingham Drinking Water System 2023 Operation and Maintenance Annual Report

PREPARED BY

Veolia Water 130 Wallace St. Walkerton, On N0G 2V0

TO

Township of North Huron, 274 Josephine St, Wingham, ON N0G 2W0

Table of Contents

1.0 INTRODUCTION AND BACKGROUND4
2.0 DESCRIPTION OF WATER SYSTEM4
3.0 SUMMARY OF WATER QUALITY MONITORING6
3.1 Water Treatment Equipment Operation and Monitoring as Per Schedule 7, O. Reg 170/036
3.1.1 Point of Entry Chlorine Residual6
3.1.2 Distribution Chlorine Residual6
3.1.3 Turbidity 7
3.2 Microbiological Sampling as per Schedule 10, O. Reg.170/03 Well 38
3.2.1 Microbiological Sampling as per Schedule 10, O. Reg.170/03 Well 48
3.2.2 Treated Water Samples9
3.2.3 Distribution Samples10
3.3 Chemical Sampling & Testing as per Schedule 13, O. Reg.170/0311
3.3.1 Inorganics11
3.3.2 Lead12
3.3.3 Organics
3.3.4 Trihalomethanes
3.3.5 Nitrate & Nitrite15
3.3.6 Sodium16
3.3.7 Fluoride16
4.0 WATER AND CHEMICAL USAGE16
4.1 Chemical Usage16
4.2 Annual Flows
5.0 IMPROVEMENTS TO SYSTEM AND ROUTINE AND PREVENTATIVE MAINTENANCE
6.0 MINISTRY OF THE ENVIRONMENT INSPECTIONS AND REGULATORY ISSUES

Annual Report For the 2023 Operating Year

List of Tables

- Table 1 Treated and Distribution Chlorine Residuals for Wingham Drinking Water System
- Table 2 Raw and Treated Water Turbidities for Wingham Drinking Water System
- Table 3 Microbiological Results for Raw Water Well 3 Wingham Drinking Water System
- Table 3.1- Microbiological Results for Raw Water Well 4 Wingham Drinking water system
- Table 4 Microbiological Results for Point of Entry at Wingham Drinking Water System
- Table 5 Microbiological Results for Wingham Distribution System
- Table 6 Schedule 23 Results for Wingham Drinking Water System
- Table 7 Lead Sampling Program Results for Wingham Drinking Water System
- Table 8 Schedule 24 Results for Wingham Drinking Water System
- Table 9 Nitrate, Nitrite and THM Results at Wingham Drinking Water System
- Table 10-Chemical Usage at the Wingham Drinking Water System
- Table 11 Treated Water Flows for Wingham Drinking Water System
- Table 12 –Haloacetic Acids

1.0 INTRODUCTION AND BACKGROUND

The purpose of the Annual Report is to document the operation and maintenance data for the Wingham Drinking Water System for review by the Ministry of the Environment Conservation and Parks in accordance with O. Reg. 170/03. This report covers January 1, 2023 to December 31, 2023. A copy of this report will be submitted to the owner to be uploaded to the Township's website and can be supplied, free of charge, to interested parties upon request.

2.0 DESCRIPTION OF WATER SYSTEM

The Wingham Drinking Water System (DWS # 220001502), is characterized as a "secure ground water" system and is classified as a large municipal residential system. The system consists of two wells – Well 3 with a rated capacity of 6537 m3/day and Well 4 with a rated capacity of 5270 m3/d. Treatment at both sites consists of chlorination (sodium hypochlorite) and iron sequestration (sodium silicate) treatment. The Well 3 system is located at 200 Water St. Well #4 is located at 23 Albert St. The distribution system serves the community of Wingham with a population of approximately 2950 residents, 1150 customer services and 29 km of various size and material water main.

The system Is owned by the Corporation of the Township of North Huron and operated by Veolia Water Canada, the Operating Authority.

The Well 3 supply system consists of a 323 mm drilled to a depth of 102.1m fitted with variable speed pump capable of pumping the volume specified in the MECP Permit to Take Water. The raw water consistently has substantial naturally occurring hardness and relatively high iron content that requires sequestering to prevent discoloration in the distribution system which is typical of all drilled wells in the area. Chlorine, (a critical process) and an iron sequestering agent are added to the raw water prior to entry into a baffled contact tank that satisfies the chlorine contact time required with adequate chlorine residual to disinfect.

From the contact tank/reservoir the water flows to the distribution/standpipe that maintains adequate system pressure. The well is cycled by a level controller that starts and stops the well 3/high lift pumps. Emergency power is supplied by a portable diesel generator that allows operation of the equipment during extended power interruptions. The treated drinking water is monitored for chlorine residual and turbidity by on-line equipment connected to SCADA/auto dialer. The monitoring system will alert the on-call operator to respond if the set points are breached. The chlorine and turbidity analysis data levels are stored on a data logger.

The distribution system has elevated storage to maintain pressure. Critical processes to ensure safe water are adequate chlorination and maintenance of system pressure. The monitors activate an alarm through the auto-dialer if the set points are breached, as a critical feature well 3, high-lift 2 and well 4 are equipped with variable frequency drives that can be set to maintain system pressure setpoint in the even the standpipe is not in service.

Annual Report For the 2023 Operating Year

Well #4 is a 356 mm drilled well, 98.65 m deep, complete with a stainless-steel liner and equipped with a submersible vertical turbine pump, well level sensor to measure static level and provide well level monitoring. The system has been designed to operate to alternate the duty wells between well 3 and 4.

The #4 well house is equipped with back-up diesel generator, sodium hypochlorite (2) and sodium silicate pump, a baffled chlorine contact tank equipped with 3 high lift pumps, on-line monitoring, alarm generation and auto-dialer.

Back-up power is supplied by one diesel standby generator with automatic transfer switch and double wall fuel tank.

The water quality is monitored and data-logged by a SCADA system with breaches of set-points going to an alarm dialer.

Disinfection is achieved on the Wingham well supply through the use of 12% sodium hypochlorite. In the well houses this chemical is added prior to the water entering the chlorine contact facilities at dosages high enough to achieve both primary and secondary disinfection objectives.

The distribution system is constructed with a combination of ductile iron, cast iron, PVC and high-density polyethylene piping with polyethylene, copper and galvanized steel services. There are known lead services, of which have been sampled at the initial plumbing sampling program, where no elevated levels were found due to the service material. The iron sequestering also has dual purpose of corrosion control, coupled with very stable pH and substantial alkalinity and hardness that inhibits corrosion that controls lead corrosion. These services will be replaced when street reconstruction takes place.

The system has approximately 135 fire hydrants.

The chlorine dosages range varies with the chlorine demand of the raw water.

The free chlorine residual is monitored at the point of entry to the distribution system, by an on-line chlorine analyzer, with a target residual of > 1.00 mg/l and < 1.30 mg/l.

The Wingham well supply Operates on PTTW # 1450-B38HKS which expires on August 1, 2028 which allows 11,807 cubic meters per day to be pumped from the combined wells.

The Wingham Drinking Water System (treatment Subsystem) has maximum flows as specified in the Municipal Drinking Water License (MDWL) 090-102, Issue 5 and Drinking Water Works Permit (DWWP) 090-202, Issue 5. The maximum total daily flow is 11,807 cubic meters per day.

The treated water is monitored by an on-line chlorine analyzer.

Typical system pressure ranges from 40 psi to 85 psi.

3.0 SUMMARY OF WATER QUALITY MONITORING

3.1 Water Treatment Equipment Operation and Monitoring

3.1.1 Point of Entry Chlorine Residual

Chlorine residuals are continuously measured using an online chlorine analyzer and verified for accuracy using hand-held HACH pocket colorimeter. **Table 1** shows the monthly average of the daily free chlorine residual value on the treated water at the point of entry.

3.1.2 Distribution Chlorine Residual

Chlorine residuals in the distribution system are checked daily using a HACH pocket colorimeter. In 2023, 471 distribution chlorine residuals were recorded.

Table 1. Treated & Distribution Residuals for Wingham Drinking Water System																
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Min	Max	Ave	Count
AVG W3 TW (POE) chlorine Residual mg/ L	1.53	1.43	1.56	1.53	1.56	1.47	1.30	1.38	1.40	1.51	1.40	1.41	0.96	1.75	1.46	365
AVG W4 TW (POE) chlorine Residual mg/ L	1.36	1.28	1.30	1.35	1.31	1.32	1.34	1.41	1.35	1.35	1.33	1.33	0.83	1.63	1.33	365
Average DW Residual mg/L	1.29	1.27	1.29	1.24	1.31	1.13	1.12	1.19	1.22	1.19	1.15	1.20	0.40	1.72	1.22	471

^a – Results collected from January 1, 2023 – December 31, 2023

3.1.3 Turbidity

Treated Turbidity is measured daily using an online analyzer and raw water samples are analyzed using portable turbidimeters. **Table 2**, provides a summary of raw and treated turbidity results. The maximum turbidity measured in the treated water was 0.62 NTU, this reading was recorded from Well 4.

Table 2. Raw and Treated v	Table 2. Raw and Treated water Turbidity for Wingham Drinking Water System															
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Min	Max	Ave	Count
Avg. W3 RW Turb.	0.22	0.24	0.27	0.25	0.24	0.26	0.14	0.21	0.19	0.20	0.20	0.28	0.09	0.36	0.22	52
Avg. W3 TW Turb.	0.22	0.15	0.12	0.17	0.13	0.13	0.13	0.15	0.16	0.19	0.18	0.14	0.1	0.48	0.16	365
Avg. W4 RW Turb.	0.21	0.21	0.19	0.27	0.23	0.20	0.14	0.22	0.16	0.15	0.22	0.21	0.09	0.36	0.20	51
Avg. W4 TW Turb.	0.15	0.14	0.15	0.16	0.13	0.17	0.17	0.25	0.12	0.15	0.14	0.15	0.05	0.62	0.16	365

^a – Results collected from January 1, 2023 – December 31, 2023

3.2 Microbiological Sampling

3.2.1 Raw Water Samples

Raw water samples are taken every week. In 2023, a total of 52 samples were collected and analyzed for E.Coli and Total Coliforms from Well 3 and **52** samples from Well 4. Each E. coli and Total Coliform result obtained was 0 cfu/100 ml in the raw water.

Table 3 and Table 3.1 provides a summary of bacteriological results performed on the raw water.

Table 3 - Microbiological Results for Raw Water Well 3 at Wingham Drinking Water System a

	Total Co	liform	E. Coli	
Date	# Samples	# Samples ≥1	# Samples	# Samples ≥1
Jan	5	0	5	0
Feb	4	0	4	0
Mar	4	0	4	0
Apr	4	0	4	0
May	5	0	5	0
Jun	4	0	4	0
Jul	4	0	4	0
Aug	5	0	5	0
Sep	4	0	4	0
Oct	5	0	5	0
Nov	4	0	4	0
Dec	4	0	4	0
Total	52	0	52	0

^a – Results collected from January 1, 2023 – December 31, 2023

Table 3.1 - Microbiological Results for Raw Water Well 4 at Wingham Drinking Water System ^a

	Total Col	iform	E. Coli	
Date	# Samples	# Samples ≥1	# Samples	# Samples ≥1
Jan	5	0	5	0
Feb	4	0	4	0
Mar	4	0	4	0
Apr	4	0	4	0
May	5	0	5	0
Jun	4	0	4	0
Jul	4	0	4	0
Aug	5	0	5	0
Sep	4	0	4	0
Oct	5	0	5	0
Nov	4	0	4	0
Dec	4	0	4	0
Total	52	0	52	0

^a – Results collected from January 1, 2023 – December 31, 2023

3.2.2 Treated Water (Point of Entry) Samples

One treated water sample from the point of entry from Well 3 and Well 4 is taken every week and analyzed for E. Coli, Total Coliforms and for Heterotrophic Plate Count (HPC). A total of 104 treated water samples were collected and analyzed at Wells 3 and 4 for both E.Coli and Total Coliforms there were also 104 HPC samples collected from the Point of, all samples were found to be safe. Each E. Coli and total coliform result from the treated water was 0 cfu/100 ml. Currently, there is no limit on HPC samples, HPC samples can be used as an indication of interior pipe conditions where

flushing is required when there are positive results. All (104) samples were found to be safe, with 2 results >50cfu/100ml. The range of HPC results were <10>2000 cfu/100 ml.

Table 4 provides a summary of all bacteriological results performed on treated water.

Table 4 - Microbiological Results for Point of Entry at Wingham Drinking Water System ^a

Date	#TC Samples	# Samples ≥1	#EC Samples	# Samples ≥1	-	#HPC Samples	Safe	Deteriorating =/>50
Jan	10	0	10	0		10	10	0
Feb	8	0	8	0		8	8	0
Mar	8	0	8	0		8	8	0
Apr	8	0	8	0		8	8	0
May	10	0	10	0		10	10	0
Jun	8	0	8	0		8	8	0
Jul	8	0	8	0		8	7	1
Aug	10	0	10	0		10	9	1
Sep	8	0	8	0		8	8	0
Oct	10	0	10	0		10	10	0
Nov	8	0	8	0		8	8	0
Dec	8	0	8	0		8	8	0
Total	104	0	104	0		104	104	2

^a – Results collected from January 1, 2023 – December 31, 2023

3.2.3 Distribution System

Distribution samples are collected every week and tested for E. Coli, Total Coliform and for Heterotrophic Plate Count (HPC). In addition to regular samples, we collected 2 samples for a watermain installation. In 2023, a total of 156 distribution samples were collected and analyzed for both Total Coliforms and E. Coli. All E. Coli and all total coliform result from the treated water were 0 cfu/100 ml. There was a total of 52 HPC samples with ranges between <10-20 cfu/100 ml. **Table 5** provides a summary of all bacteriological samples taken in the distribution system.

Table 5 – Microbiological Results for Wingham Distribution System^a

				_			
Date	# Samples TC	# Samples ≥1	# Samples EC	# Samples ≥1	# Samples HPC	Safe	Deteriorating =/>50
Jan	15	0	15	0	5	5	0
Feb	12	0	12	0	4	4	0
Mar	12	0	12	0	4	4	0
Apr	12	0	12	0	4	4	0
May	15	1	15	0	5	5	0
Jun	12	0	12	0	4	4	0
Jul	12	0	12	0	4	4	0
Aug	15	0	15	0	5	5	0
Sep	12	0	12	0	4	4	0
Oct	15	0	15	0	5	5	0
Nov	12	0	12	0	4	4	0
Dec	12	0	12	0	4	4	0
Total	156	1	156	0	52	52	0

^a – Results collected from January 1, 2023 – December 31, 2023

3.3 Chemical Sampling & Testing

3.3.1 Inorganics

One treated water sample is taken every 36 months and tested for inorganics. The most recent samples for the Wingham Drinking Water System were collected on May 11, 2021 and submitted to the laboratory for analysis of inorganics as listed in Schedule 23. All parameters were found to be within compliance. Inorganic Schedule 23 samples will be collected next in May 2024. Results from 2021 can be found in **Table 6.**

Table 6 – Schedule 23 Results for Wingham Drinking Water System ^a

Water Works Name:			Wingham W	ell Supply		
Well No. (if applicable):			Well # 4 & #			
Year:			2021			
Serviced Population			2845			
Laboratories Which Perform	ner Analyses:		SGS Lakefie	eld Research		
Water Works #	_		220001502			
		Analysis			Analysis	Maximum
	Date	Well 3	Well 4			Allowable Level
<u>Parameter</u>	(MM/DD/YY)	(ug/L)	(ug/L)		(ug/L)	(ug/L)
Schedule 23		May 11-21	May 11-21			100 A
Antimony	May 11-21	0.9	0.9	<mdl< td=""><td></td><td>6</td></mdl<>		6
Arsenic	May 11-21	1.7	3.1			25
Barium	May 11-21	156	49.1			1000
Boron	May 11-21	27	34			5000
Cadmium	May 11-21	0.003	0.003	<mdl< td=""><td></td><td>5</td></mdl<>		5
Chromium	May 11-21	0.17	0.23			50
Mercury	May 11-21	0.01	0.01	<mdl< td=""><td></td><td>1</td></mdl<>		1
Selenium	May 11-21	0.08	0.04			10
Uranium	May 11-21	0.996	0.864			20

^a – Results collected May 21, 2021

3.3.2 Lead. Alkalinity & pH

Schedule 15.1 of Ontario Regulation 170/03 requires that samples be taken during two seasons: once between December 15 and April 15 and once between June 15 and October 15. North Huron is on the reduced schedule for Lead therefore it only has to be tested every 3 years, samples will be collected again in 2025**Table 7.**

Table 7 – Lead Sampling Program Results for Wingham Drinking Water System ^a

DW Lead	l/pH /Alkalinity	Wingham		
Date	Location	рН	Alkalinity mg/L as CaCO3	Lead ug/L
Mar 20-23	35 Carling Terr Hydrant	7.07	227	N/A
Mar 20-23	11 Bristol Terr Hydrant	6.97	229	N/A
Oct 3-23	295 William st Hydrant	7.24	231	N/A
Oct 3-23	99 Kerr dr -rear-hydrant	7.29	229	N/A
	Min	6.97	227	
	Max	7.29	231	
	MACS	6.5-8.5	30-500	
*Lead ever	v 3 vears due 2025			

^a – Samples collected on March 20, 2023 and October 3, 2023 respectively.

3.3.3 Organics

One treated water sample is taken every 36 months and tested for schedule 24 organic parameters. The most recent samples were collected on May 11, 2021. All parameters were found to be within compliance. Schedule 24 Samples will be collected again in May of 2024. 2021 sample results can be found in **Table 8**.

Table 8 – Schedule 24 Results for Wingham Drinking Water System
Water Works Name:
Wingham Woll Supply

Water Works Name:		Wingham Well Supply			
Well No. (if applicable):		Well # 4 & # 3			
Year:		2021			
Serviced Population		2845			
Laboratories Which Performer Analyses:		SGS Lakefield Research			
Water Works #		220001502			
					Maximum
	Well # 3		Well #4		AllowableLevel
<u>Parameter</u>	(ug/L)		(ug/L)		(ug/L)
Schedule 23 & 24	May 11-21		May 11-21		
Benzene	0.32	<mdl< td=""><td>0.32</td><td><mdl< td=""><td>5</td></mdl<></td></mdl<>	0.32	<mdl< td=""><td>5</td></mdl<>	5
Carbon Tetrachloride	0.17	<mdl< td=""><td>0.17</td><td><mdl< td=""><td>5</td></mdl<></td></mdl<>	0.17	<mdl< td=""><td>5</td></mdl<>	5
1,2-Dichlorobenzene	0.41	<mdl< td=""><td>0.41</td><td><mdl< td=""><td>200</td></mdl<></td></mdl<>	0.41	<mdl< td=""><td>200</td></mdl<>	200
1,4-Dichlorobenzene	0.36	<mdl< td=""><td>0.36</td><td><mdl< td=""><td>5</td></mdl<></td></mdl<>	0.36	<mdl< td=""><td>5</td></mdl<>	5

1,1-Dichloroethylene	0.33	<mdl< th=""><th>0.33</th><th><mdl< th=""><th>14</th></mdl<></th></mdl<>	0.33	<mdl< th=""><th>14</th></mdl<>	14
1,2-Dichloroethane	0.35	<mdl< td=""><td>0.35</td><td><mdl< td=""><td>5</td></mdl<></td></mdl<>	0.35	<mdl< td=""><td>5</td></mdl<>	5
Dichloromethane	0.35	<mdl< td=""><td>0.35</td><td><mdl< td=""><td>50</td></mdl<></td></mdl<>	0.35	<mdl< td=""><td>50</td></mdl<>	50
Monochlorobenzene	0.3	<mdl< td=""><td>0.3</td><td><mdl< td=""><td>80</td></mdl<></td></mdl<>	0.3	<mdl< td=""><td>80</td></mdl<>	80
Tetrachloroethylene	0.35	<mdl< td=""><td>0.35</td><td><mdl< td=""><td>10</td></mdl<></td></mdl<>	0.35	<mdl< td=""><td>10</td></mdl<>	10
Trichloroethylene	0.44	<mdl< td=""><td>0.44</td><td><mdl< td=""><td>5</td></mdl<></td></mdl<>	0.44	<mdl< td=""><td>5</td></mdl<>	5
Vinyl Chloride	0.17	<mdl< td=""><td>0.17</td><td><mdl< td=""><td>1</td></mdl<></td></mdl<>	0.17	<mdl< td=""><td>1</td></mdl<>	1
Diquat	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>70</td></mdl<></td></mdl<>	1	<mdl< td=""><td>70</td></mdl<>	70
Paraquat	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>10</td></mdl<></td></mdl<>	1	<mdl< td=""><td>10</td></mdl<>	10
Glyphosate	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>280</td></mdl<></td></mdl<>	1	<mdl< td=""><td>280</td></mdl<>	280
Polychlorinated Biphenyls	0.04	<mdl< td=""><td>0.04</td><td><mdl< td=""><td>3</td></mdl<></td></mdl<>	0.04	<mdl< td=""><td>3</td></mdl<>	3
Benzo(a)pyrene	0.004	<mdl< td=""><td>0.004</td><td><mdl< td=""><td>0.01</td></mdl<></td></mdl<>	0.004	<mdl< td=""><td>0.01</td></mdl<>	0.01
Alachlor	0.02	<mdl< td=""><td>0.02</td><td><mdl< td=""><td>5</td></mdl<></td></mdl<>	0.02	<mdl< td=""><td>5</td></mdl<>	5
Atrazine+N-dealkylated metabolites	0.01	<mdl< td=""><td>0.01</td><td><mdl< td=""><td>5</td></mdl<></td></mdl<>	0.01	<mdl< td=""><td>5</td></mdl<>	5
Atrazine	0.01	<mdl< td=""><td>0.01</td><td><mdl< td=""><td></td></mdl<></td></mdl<>	0.01	<mdl< td=""><td></td></mdl<>	
De-ethylated atrazine	0.01	<mdl< td=""><td>0.01</td><td><mdl< td=""><td></td></mdl<></td></mdl<>	0.01	<mdl< td=""><td></td></mdl<>	
Azinphos-methyl	0.05	<mdl< td=""><td>0.05</td><td><mdl< td=""><td>20</td></mdl<></td></mdl<>	0.05	<mdl< td=""><td>20</td></mdl<>	20
					Maximum
	Well #3		Well #4		Allowable Leve
<u>Parameter</u>	(ug/L)		(ug/L)		(ug/L)
Carbaryl	0.05	<mdl< td=""><td>0.05</td><td><mdl< td=""><td>90</td></mdl<></td></mdl<>	0.05	<mdl< td=""><td>90</td></mdl<>	90
carbofuran	0.01	<mdl< td=""><td>0.01</td><td><mdl< td=""><td>90</td></mdl<></td></mdl<>	0.01	<mdl< td=""><td>90</td></mdl<>	90
Chlorpyrifos	0.02	<mdl< td=""><td>0.02</td><td><mdl< td=""><td>90</td></mdl<></td></mdl<>	0.02	<mdl< td=""><td>90</td></mdl<>	90
Diazinon	0.02	<mdl< td=""><td>0.02</td><td><mdl< td=""><td>20</td></mdl<></td></mdl<>	0.02	<mdl< td=""><td>20</td></mdl<>	20
Dimethoate	0.06	<mdl< td=""><td>0.06</td><td><mdl< td=""><td>20</td></mdl<></td></mdl<>	0.06	<mdl< td=""><td>20</td></mdl<>	20
Diuron	0.03	<mdl< td=""><td>0.03</td><td><mdl< td=""><td>150</td></mdl<></td></mdl<>	0.03	<mdl< td=""><td>150</td></mdl<>	150
William Company Company			0.00		150
Malathion	0.02	<mdl< td=""><td></td><td><mdl< td=""><td>190</td></mdl<></td></mdl<>		<mdl< td=""><td>190</td></mdl<>	190
Malathion	0.02	<mdl< td=""><td></td><td></td><td></td></mdl<>			
Malathion Metolachlor	0.02	<mdl< td=""><td></td><td><mdl< td=""><td></td></mdl<></td></mdl<>		<mdl< td=""><td></td></mdl<>	
			0.02	<mdl< td=""><td>190</td></mdl<>	190
Metolachlor	0.01	<mdl< td=""><td>0.02</td><td><mdl< td=""><td>190 50</td></mdl<></td></mdl<>	0.02	<mdl< td=""><td>190 50</td></mdl<>	190 50
Metolachlor	0.01	<mdl< td=""><td>0.02 0.01 0.02</td><td><mdl< td=""><td>190 50</td></mdl<></td></mdl<>	0.02 0.01 0.02	<mdl< td=""><td>190 50</td></mdl<>	190 50
Metolachlor Metribuzin	0.01	<mdl <mdl< td=""><td>0.02 0.01 0.02 0.01</td><td><mdl <mdl <mdl< td=""><td>190 50 80</td></mdl<></mdl </mdl </td></mdl<></mdl 	0.02 0.01 0.02 0.01	<mdl <mdl <mdl< td=""><td>190 50 80</td></mdl<></mdl </mdl 	190 50 80
Metolachlor Metribuzin Phorate	0.01 0.02 0.01	<mdl <mdl<="" td=""><td>0.02 0.01 0.02 0.01</td><td><mdl <mdl <mdl <mdl< td=""><td>190 50 80 2</td></mdl<></mdl </mdl </mdl </td></mdl>	0.02 0.01 0.02 0.01	<mdl <mdl <mdl <mdl< td=""><td>190 50 80 2</td></mdl<></mdl </mdl </mdl 	190 50 80 2
Metolachlor Metribuzin Phorate Prometryne	0.01 0.02 0.01 0.03	<mdl <mdl <mdl <mdl< td=""><td>0.02 0.01 0.02 0.01 0.03</td><td><mdl <mdl="" <mdl<="" td=""><td>190 50 80 2 1</td></mdl></td></mdl<></mdl </mdl </mdl 	0.02 0.01 0.02 0.01 0.03	<mdl <mdl="" <mdl<="" td=""><td>190 50 80 2 1</td></mdl>	190 50 80 2 1
Metolachlor Metribuzin Phorate Prometryne	0.01 0.02 0.01 0.03	<mdl <mdl <mdl <mdl< td=""><td>0.02 0.01 0.02 0.01 0.03</td><td><mdl <mdl="" <mdl<="" td=""><td>190 50 80 2 1</td></mdl></td></mdl<></mdl </mdl </mdl 	0.02 0.01 0.02 0.01 0.03	<mdl <mdl="" <mdl<="" td=""><td>190 50 80 2 1</td></mdl>	190 50 80 2 1
Metolachlor Metribuzin Phorate Prometryne Simazine	0.01 0.02 0.01 0.03 0.01	<mdl <mdl="" <mdl<="" td=""><td>0.02 0.01 0.02 0.01 0.03 0.01</td><td><mdl <mdl="" <mdl<="" td=""><td>190 50 80 2 1</td></mdl></td></mdl>	0.02 0.01 0.02 0.01 0.03 0.01	<mdl <mdl="" <mdl<="" td=""><td>190 50 80 2 1</td></mdl>	190 50 80 2 1
Metolachlor Metribuzin Phorate Prometryne Simazine Terbufos	0.01 0.02 0.01 0.03 0.01	<mdl <mdl="" <mdl<="" td=""><td>0.02 0.01 0.02 0.01 0.03 0.01</td><td><mdl <mdl="" <mdl<="" td=""><td>190 50 80 2 1 10</td></mdl></td></mdl>	0.02 0.01 0.02 0.01 0.03 0.01	<mdl <mdl="" <mdl<="" td=""><td>190 50 80 2 1 10</td></mdl>	190 50 80 2 1 10

Annual Report For the 2023 Operating Year

Bromoxynil	0.33	<mdl< th=""><th>0.33</th><th><mdl< th=""><th>5</th></mdl<></th></mdl<>	0.33	<mdl< th=""><th>5</th></mdl<>	5
Dicamba	0.2	<mdl< td=""><td>0.2</td><td><mdl< td=""><td>120</td></mdl<></td></mdl<>	0.2	<mdl< td=""><td>120</td></mdl<>	120
Diclofop-methyl	0.4	<mdl< td=""><td>0.4</td><td><mdl< td=""><td>9</td></mdl<></td></mdl<>	0.4	<mdl< td=""><td>9</td></mdl<>	9
MCPA (mg/L)	0.00012	<mdl< td=""><td>0.00012</td><td><mdl< td=""><td>0.1</td></mdl<></td></mdl<>	0.00012	<mdl< td=""><td>0.1</td></mdl<>	0.1
Picloram	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>190</td></mdl<></td></mdl<>	1	<mdl< td=""><td>190</td></mdl<>	190
2,4-dichlorophenol	0.15	<mdl< td=""><td>0.15</td><td><mdl< td=""><td>900</td></mdl<></td></mdl<>	0.15	<mdl< td=""><td>900</td></mdl<>	900
2,4,6-trichlorophenol	0.25	<mdl< td=""><td>0.25</td><td><mdl< td=""><td>5</td></mdl<></td></mdl<>	0.25	<mdl< td=""><td>5</td></mdl<>	5
2,3,4,6-tetrachlorophenol	0.2	<mdl< td=""><td>0.2</td><td><mdl< td=""><td>100</td></mdl<></td></mdl<>	0.2	<mdl< td=""><td>100</td></mdl<>	100
Pentachlorophenol	0.15	<mdl< td=""><td>0.15</td><td><mdl< td=""><td>60</td></mdl<></td></mdl<>	0.15	<mdl< td=""><td>60</td></mdl<>	60

3.3.4 Trihalomethanes

One distribution sample is taken every three months from a point in the distribution system and tested for Trihalomethanes (THMs). The Ontario Drinking Water Quality Standard (ODWQS) have set a Maximum Allowable Concentration (MAC) of 100µg/L for this parameter and it's expressed as a running annual average. In 2023, the average THM was found to be 6.7µg/L, which is well below the MAC. Refer to **Table 9** for the summary of Trihalomethane results.

3.3.5 Nitrate & Nitrite

One treated water sample is taken every three months and tested for nitrate and nitrite. The Ontario Drinking Water Quality Standard (ODWQS) have set a Maximum Allowable Concentration (MAC) of 1 mg/L for nitrites and 10 mg/L for nitrates. The results were found to be within compliance. Refer to **Table 9**.

Table 9 – Nitrate, Nitrite and THM Results at Wingham Drinking Water System

Treated Drinking Water - Nitrites and Nitrates POE Well 3									O.Reg 169					
Date		Jan 10-23		Apr 11-23		July 4-23		Oct 3-23	Min Max Avg MAC 1/2 MAC					
NO2	<	0.003	<	0.003	<	0.03	<	0.003		0.003	0.030	0.010	1	0.5
NO3		0.009		0.013		0.009		0.009		0.009	0.013	0.010	10	5
NO2+NO3		0.009		0.013		0.009		0.009		0.009	0.013	0.010	10	5

Treated Drinking Water - Nitrites and Nitrates POE Well 4									O.Reg 169					
Date		Jan 10-23		Apr 11-23		July 4-23		Oct 3-23		Min	Max	Avg	MAC	1/2 MAC
NO2	'	0.003	<	0.003	<	0.003	<	0.003		0.003	0.003	0.003	1	0.5
NO3		0.006		0.006		0.006	<	0.006		0.006	0.006	0.006	10	5
NO2+NO3		0.006		0.006		0.006	<	0.006		0.006	0.006	0.006	10	5

Distribution Drinking Water - Trihalomethanes													
Date	Jan 10-23		Apr 11-23		July 4-23		Oct 3-23		Min	Max	Average	MAC	1.2 MAC
THMs (total)	4.8		4.6		9.7		7.8		4.6	9.7	6.7	100	50
Bromodichloromethane	1.3		1.1		1.9		1.8		1.1	1.9	1.5		
Bromoform <	0.34	٧	0.34	٧	0.34		0.34		0.340	0.340	0.340		
Chloroform	3		3.6		7.1		5.3		3.0	7.1	4.8		
Dibromochloromethane	0.47		0.37		0.67		0.62		0.37	0.67	0.53		

^a – Samples collected on January 10th, April 11th, July 4th and Oct 3rd 2023 respectively.

3.3.6 Sodium

One water sample is collected every 60 months and tested for Sodium. O. Reg 170/03 has set a Maximum Acceptable concentration (MAC) of 20 mg/L for Sodium which requires the Medical Office of Health be notified if the concentration exceeds the MAC. These samples were collected on January 10, 2023 and were found to be 13.1 mg/L at Well 3 and 15.1 mg/L at Well 4.

3.3.7 Fluoride

One water sample is collected at least once in every 60 months and tested for Fluoride. The Ontario Drinking Water Quality Standards (ODWQS) have set a MAC of 1.5 mg/L. These samples were collected on January 10, 2023 and were found to be 0.96 mg/L at Well 3 and 0.98 mg/L at Well 4, which is within compliance.

TW Sodiu	m/ Fluoride				
Date	Location	Fluoride	Sodium		
Jan 10-23	Well 3 POE	0.96	13.1		
	Well 4 POE	0.98	15.1		
Treat	ed MAC	1.5	20		
	Min	0.96	13.1		
	Max	0.98	15.1		
	Average	1.0	14.1		

Treated Water Sodium and Fluoride is required to be collected and analyzed in 2028

4.0 WATER AND CHEMCIAL USAGE

4.1 Chemical Usage

Refer to **Table 10.** From January 1, 2023 to December 31, 2023, 877.3 kg of sodium hypochlorite was used to ensure proper disinfection in the distribution system with an average dosage of 2.57 mg/L between the two wells.

Table 10 - Chemical Usage at Wingham Drinking Water System

	Township of North Huron - Wingham Well Supply - 2023 Summary													
Site		Well	#3	Well #4										
Month	Chlorine used (Kg)	CI Dosage	Silicate (L)	Silicate Dosage	Chlorine used (Kg)	CI Dosage	Silicate (L)	Silicate Dosage						
January	53.7	2.82	239.9	5.72	17.0	2.71	77.1	5.11						
February	48.4	2.41	252.3	5.02	14.9	2.63	82.5	5.40						
March	54.8	1.51	301.6	5.22	14.3	2.83	72.7	5.19						
April	43.3	2.36	231.8	4.84	20.9	2.49	120.0	5.40						
May	54.3	2.38	304.8	5.21	32.5	2.57	177.1	5.45						
June	58.3	2.36	323.3	5.35	31.6	2.61	181.0	5.65						
July	58.7	3.63	332.1	7.90	25.4	2.81	120.5	5.43						
August	46.2	2.37	254.5	5.11	23.1	2.89	112.5	5.51						
September	51.9	2.51	280.6	5.38	28.5	2.87	139.8	5.69						
October	43.9	2.34	250.1	5.24	24.8	2.55	133.7	5.51						
November	41.6	2.17	258.2	5.26	21.7	2.81	116.6	5.78						
December	45.0	2.18	280.8	5.31	22.3	2.75	115.9	5.40						
Total	600.2	29.04	3309.9	65.55	277.1	32.51	1449.6	65.54						
Min	41.6	1.51	231.8	4.84	14.3	2.49	72.7	5.11						
Max	58.7	3.63	332.1	7.90	32.5	2.89	181.0	5.78						
Avg	50.0	2.42	275.8	5.46	23.1	2.71	120.8	5.46						

^a – Results collected from January 1, 2023 – December 31, 2023

4.2 Annual Flows

A summary of the water supplied to the distribution system in 2023 is provided in Table 11. This Table provides a breakdown of the flow provided to the distribution system.

Flow meters were calibrated in 2023 by Advanced Meter Service and were found to be acceptable. The Flow meters will be calibrated again 2024.

Tak	ole 11. V	Vater Taking Summary				
Permit t	o Tak	e Water 1450-B38HKS C	ompl	iance Report	- 2023	
3.2 -Maxi	mum A	Amount of Taking Permitted	1			ľ
		Max/Day on Permit		Peak Flow	%of Limit	
Well #3 (ir	n m3)	6537	m3	1718	26.3	%
Well #4 (ir	n m3)	5270	m3	1336	25.4	%
,	,					
3.2 - Aver	rage A	nnual Amount of Taking Peri	nitted			
Well #3 (ir	n m3)	6537	m3	690	10.6	%
Well #4 (ir	n m3)	5270	m3	284	5.4	%
<u>Municipa</u>	I Drink	ing Water License 090-102 Is	sue 5	- Capacity Rep	ort	_
		Total Peak Flow				
		Maximum		Actual	%of Cap	
Capacity ((m3/d)	11808	m3	1978	16.8	%
Total Ave	rage Fl	ow				
Capacity ((m3/d)	4309774	m3	355445	8.2	%
		11808	m3	974	8.2	%

5.0 IMPROVEMENTS TO SYSTEM AND ROUTINE AND PREVENTATIVE MAINTENANCE

The following summarizes water system improvements and routine and preventative maintenance for the Wingham Drinking Water System:

- Routine & corrective maintenance as per computerized maintenance system
- Security upgrades- Locks, Door knobs and Lights
- Chemical Containment upgrades/ smaller day tanks for easier handling
- Well 4 Heater & AC unit upgraded
- Well 4 Backflow service/ repair kit/ inspection
- Well 4 High-lift 1 50hp Soft-start installed
- Well 4 singer valve repairs
- High-lift 1- rebuild/ repair motor

6.0 MINISTRY OF THE ENVIRONMENT INSPECTIONS AND REGULATORY ISSUES

The Ministry of Environment inspection was completed by Shayne Finlay on July 20- Aug 25 2023.

There were no non-compliances noted and the final inspection rating was 100%

7.0 Haloacetic Acids (HAA5)

In 2023 Samples for HAA5's were collected at the beginning of every quarter, Maximum acceptable concentration for HAA5's is 80 ug/L all samples were compliant to the limit in 2023

Table 12 Total Halo-acetic Acids

HAA5	Ug/L									
Date	Jan 10-23		Apr 1	1-23	July	4-23	Oct	3-23		
	Well 3	WEII 4	Well 3	WEII 4	Well 3	WEII 4	Well 3	WEII 4	Average	Average
	DW	DW	DW	DW	DW	DW	DW	DW	Well 3	well 4
Total HAA5	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3
Bromoacetic										
Acid	2.9	2.9	2.9	2.9	4.7	4.7	4.7	4.7	3.8	3.8
Chloroacetic										
Acid	4.7	4.7	4.7	4.7	2.9	2.9	2.9	2.9	3.8	3.8
Dichloroacetic										
Acid	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6
Dibromoacetic										
Acid	2	2	2	2	2	2	2	2	2	2
Trichloroacetic										
Acid	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3
Min	2	2	2	2	2	2	2	2	2	2
Max	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3
Average	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8

8.0 Security Incident

Well house 4 had a security breach by 3 individuals as seen on a video recording, the 3 individuals broke into the Well 4 chemical building and wellhouse, while minor damages to the property were sustained during the incident there were no process interruptions on disruption to either the Chemicals or Equipment. We took substantial steps to investigate the situation and did involve the Huron County Police in the incident. Repairs are being made to the property and we have taken steps to improve the security at the site by making the site more visible to the public, installing brighter lights and we installed new deadbolts and door knobs.

Report Completed by: Veolia Water For More information please contact: Scott Gowan, Project Manager

Veolia Water Canada, Inc.

130 Wallace St PO Box 220, Walkerton On, N0G 2V0 $\,$

Tel 1-519-881-1474

scott.gowan@yeolia.com

www.veoliawaterna.com