

Wingham Sewage Treatment Plant

2024 Annual Report

Owned by the Corporation of the Township of North Huron and Operated by Veolia Water Canada

Page **1** of **10** \\nh-fileserver\USERS\kbruce\1-FILING SYSTEM\E Enviromental Services\E13 Water Monitoring\3-Wingham Sewage\E13 Wingham Wastewater 2024\Wingham Sewage Treatment Plant 2024 Annual Report.docx

Wingham Sewage Treatment Plant 2024 Annual Report

Wingham STP ECA 1040-9HAN94 issued May 30, 2014 and #3557-7UNPUR (Aug 11, 2009-Air) & (CLI ECA 090-W601)

The Following is a summary and discussion of the 2024 Wingham Sewage treatment plant operation and summary of compliance limits as set forth in the Wingham STP ECA 1040-9HAN94 Issued May 30 2014.

The Rated Capacity of the Treatment Unit is 3,400m3 average daily flow

Based on Raw Sewage Flows, the 2024 annual average daily flow was 1749m3/day which represents 51% of the 3400m3/day capacity. The maximum Peak flow of 5327m3 occurred in April which represents 157% of the capacity.

Bypass Events

There were no bypass or overflow events that occurred during 2024 from the Wingham sewage treatment plant

Compliance limits

The plant consistently removed 96.8% Biological Oxygen demand, 92.4% total suspended solids, 89.4% phosphorous and 95.6% total kjeldahl nitrogen which is well within the range of removals for a secondary sewage plant and consistent with previous yearly operations.

Operational problems

There were no major operational issues to note during the 2024 operating year, a few minor Electrical repairs were needed after power outages. It is being noted in the Capital suggestions to install Backup power and look into updates to the entire Motor control Center

Maintenance

Routine maintenance was performed throughout the year, such as:

- oil changes in gear drives
- cleaning UV lights
- Generator Runs
- Cleaning bar screens

Quality Control Monitoring

Monitoring includes an online dissolved oxygen sensor which indicates loading and raw sewage quality, aeration basin solids content and proper operations of the aerators. Secondary clarifiers effluent is monitored for dissolved phosphorous to determine adequate ferric chloride dosage in aeration basins as well as general clarity and surface debris which indicates proper solids removal. Adequate solids return to the aeration and wasting rates.

The raw sewage flowmeter measures the flow going to the treatment plant and is used to base dosages and treatment plant capacity. The final effluent flow meter measures flow to the UV lights and does not represent the hydraulic loading of the plant but rather is a sum of the flow through the plant and any lagoon discharge. Results of monitoring activities can be viewed on the monthly spreadsheets.

A New Sewage pump station was incorporated into the Sewage collection system in October. The new Sewage pump station is equipped with a raw sewage flow meter which is used to measure the flow going to the plant combined with the flow from the Josephine St pumping station. The Pumping station has 2 raw sewage pumps, standby generator and dialer trending can be checked remotely. Results of monitoring can be viewed on monthly spreadsheets.

Calibration and Maintenance

There are three flowmeters, raw sewage (one at each pumping stations) in and the final effluent discharge volumes. The flowmeters are calibrated yearly this year the Josephine St. pumping station raw sewage was calibrated by Advanced meter Services as well as the final effluent. The Hutton Heights new pumping station will be calibrated in 2025. The certificates are stored at the PUC Office. The pH analyzer is calibrated monthly and recorded in the log books.

Efforts to meet effluent objectives

As described in the quality control monitoring section, analytic and visual parameters are used as indicators of process efficiency and should fall within the critical control points. A summary of these values was developed and is in the Wingham sewage treatment facility operations manual for reference and historically have been adequate to maintain compliance.

Biosolids Generated

A total of 6664 cubic meters were removed from cell 1 in 2024. Approximately 1781m3 of sludge went into the lagoon in 2024. Out of the 1781m3 added to the lagoon approximately 900m3 of that was added from the Blyth Storage tank in April 2024. We would estimate approximately 890m3 will go into the lagoon for 2025. Our estimate for 2025 is based on a 1 % increase in flows from the new pumping station, Estimating the solids volume in a lagoon situation is nearly impossible when there are no terms of reference for the % solids concentration. Many factors go into the volume such as how well the sludge compacts, water depth in the lagoon, temperature, wind action, solids quality, etc.

Complaints

There were no complaints received as results of the operation of the sewage treatment facility.

Reports

Attached in the report is a data summary, Compliance summary, Sludge metals summary, Bypass and overflow summary

\\nh-fileserver\USERS\kbruce\1-FILING SYSTEM\E Enviromental Services\E13 Water Monitoring\3-Wingham Sewage\E13 Wingham Wastewater 2024\Wingham Sewage Treatment Plant 2024 Annual Report.docx

Page 4 of 10

0004

Wingham Sewage Treatment

	Plar	π					2024									
Flows Incoming	Jan	Feb	March	April	Мау	June	July	Aug	Sept	Oct	Nov	Dec	Total(m3)	Avg(m3)	Max(m3)	% Cap
Flows	79554	69405	71898	83156	58014	45777	42398	40994	33291	32358	31563	49969	638376.34	1749	83156	51.4
Average	2566	2393	2319	2772	1913	1526	1368	1322	1110	1044	1018	1612				
Max/d	5301	3264	4362	5327	2548	1998	2472	1912	1318	1276	1339	4507			5327	
Raw																
Sewage														Avg	Max.	%Remova
BOD	49	58	45	43	63	53	69	70	103	98	103	32		65	103	96.8
SS	63	47	68	27	35	43	36	49	57	51	45	23		45	68	92.4
Alkalinity	330	320	316	320	320	348	312	348	356	361	368	219				
TP	1	1.51	1.54	1.07	1.28	2.13	2.22	2.23	2.94	3.19	2.94	1.17		1.93	3.19	89.4
TKN	11	14.45	11.85	11.95	15.20	21.25	21.77	20.80	24.65	30.45	30.25	12.40		18.87	30.45	95.6
рН	7.64	7.61	7.61	7.58	7.51	7.41	7.48	7.26	7.18	7.99	7.55	7		7.51	7.99	
Final Efflu	ient												_			
E. Coli	27	10	84	45	8	13	5	41	18	13	4	25		24.41	84	
CBOD	2.7	2.5	2.	2	2	2	2	2	2	2	2	2		2.10	2.67	
SS	2.7	2.5	2.5	4	3	3	3	2	2.50	4	3	11		3.41	10.80	
Alkalinity	259	240	235	233	216	189	201	217	171	157	150	190		205	259	
Ammonia	0.13	0.20	0.20	0.3	0.5	0.4	0.35	0.41	0.35	0.45	0.40	0.21	-	0.32	0.46	
TKN	0.57	1.75	1.05	0.75	0.85	1.25	0.50	0.85	0.50	0.75	0.50	0.57		0.82	1.75	
TP	0.27	0.26	0.27	0.50	0.30	0.15	0.10	0.10	0.10	0.10	0.10	0.20		0.20	0.50	
NO2	0.03	0.04	0.03	0.04	0.05	0.03	0.06	0.06	0.07	0.05	0.03	0.09		0.05	0.09	
NO3	10.72	10.26	11.60	10.73	12.45	15.40	19.10	19	22	12	26	19		15.69	26.30	
pН	7.49	7.59	7.55	7.52	7.57	7.43	7.36	7.37	7.23	7.23	7.32	7.40		7.42	7.59	
H2S>	0.02	-	-	0.02	-	-	0.02	-	-	0.02	-	-		0.02	0.02	

Page **5** of **10** \\nh-fileserver\USERS\kbruce\1-FILING SYSTEM\E Enviromental Services\E13 Water Monitoring\3-Wingham Sewage\E13 Wingham Wastewater 2024\Wingham Sewage Treatment Plant 2024 Annual Report.docx

Wingha	am STP Co	mpliance S	Summary			2024						
Yellow highlights	are Objectiv	es not limits										
	January	February	March	April	May	June	July	August	September	October	November	December
Max/day m3	5301	3264	4362	5327	2548	1998	2472	1912	1318	1276	1339	4507
÷	•											
Av Day Flow	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400
Actual	2566	2393	2319	2772	1913	1526	1368	1322	1110	1042	1048	1608
Comp. Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
CBOD&TSS	15	15	15	15	15	15	15	15	15	15	15	15
CBOD	2.7	2.5	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
TSS	2.7	2.5	2.5	3.5	2.5	3.0	3.0	2.0	2.5	3.5	2.5	10.8
Loading Kg	51	51	51	51	51	51	51	51	51	51	51	51
CBOD Kg	6.84	5.98	4.64	5.54	3.83	3.05	2.74	2.64	2.22	2.08	2.10	3.22
TSS Kg	6.84	5.98	5.80	9.70	4.78	4.58	4.10	2.64	2.77	3.65	2.62	17.37
Comp. Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Tot P	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Actual	0.27	0.26	0.27	0.50	0.30	0.15	0.10	0.10	0.10	0.10	0.10	0.20
TP Load Kg	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
Act. TP Kg	0.70	0.61	0.63	1.39	0.57	0.23	0.14	0.13	0.11	0.10	0.10	0.32
Comp. Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
H2S	0	0	0	0	0	0	0	0	0	0	0	0
Actual(<)	0.02			0.02			0.02			0.02		
Comp. Y/N	Yes			Yes			Yes			Yes		
рН	<u>6.5 - 9.0</u>	6.5 - 9.0	6.5 - 9.0	6.5 - 9.0	6.5 - 9.0	6.5 - 9.0	6.5 - 9.0	6.5 - 9.0	6.5 - 9. <mark>0</mark>	6.5 - 9.0	6.5 - 9. 0	6.5 - 9. <mark>0</mark>
Min	7.40	7.52	7.46	7.39	7.43	7.00	7.21	7.25	7.18	7.10	7.18	7.26

Page 6 of 10

\\nh-fileserver\USERS\kbruce\1-FILING SYSTEM\E Enviromental Services\E13 Water Monitoring\3-Wingham Sewage\E13 Wingham Wastewater 2024\Wingham Sewage Treatment Plant 2024 Annual Report.docx

Max	7.58	7.66	7.67	7.59	7.95	7.94	7.49	7.44	7.31	7.31	7.41	7.55
Average	7.49	7.59	7.55	7.52	7.57	7.43	7.36	7.37	7.23	7.23	7.32	7.40
Comp. Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
E. Coli	200	200	200	200	200	200	200	200	200	200	200	200
Actual GMD	27	10	84	45	8	13	5	41	18	13	4	25
Comp. Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
NH 3&4	3	3	3	0.8	0.8	0.8	0.8	0.8	0.8	0.8	3	3
NH 3&4 Actual	3 0.13	3 0.20	3 0.20	0.8 0.32	0.8 0.46	0.8 0.42	0.8 0.35	0.8 0.41	0.8 0.35	0.8 0.45	3 0.40	3 0.21
NH 3&4 Actual NH 3&4 Load/d	3 0.13 0.34	3 0.20 0.48	3 0.20 0.46	0.8 0.32 0.89	0.8 0.46 0.88	0.8 0.42 0.63	0.8 0.35 0.47	0.8 0.41 0.54	0.8 0.35 0.38	0.8 0.45 0.46	3 0.40 0.41	3 0.21 0.33
NH 3&4 Actual NH 3&4 Load/d Limit kg/d	3 0.13 0.34 10.7	3 0.20 0.48 10.7	3 0.20 0.46 10.7	0.8 0.32 0.89 2.7	0.8 0.46 0.88 2.7	0.8 0.42 0.63 2.7	0.8 0.35 0.47 2.7	0.8 0.41 0.54 2.7	0.8 0.35 0.38 2.7	0.8 0.45 0.46 2.7	3 0.40 0.41 10.7	3 0.21 0.33 10.7
NH 3&4 Actual NH 3&4 Load/d Limit kg/d Comp. Y/N	3 0.13 0.34 10.7 Yes	3 0.20 0.48 10.7 Yes	3 0.20 0.46 10.7 Yes	0.8 0.32 0.89 2.7 Yes	0.8 0.46 0.88 2.7 Yes	0.8 0.42 0.63 2.7 Yes	0.8 0.35 0.47 2.7 Yes	0.8 0.41 0.54 2.7 Yes	0.35 0.38 2.7 Yes	0.8 0.45 0.46 2.7 Yes	3 0.40 0.41 10.7 Yes	3 0.21 0.33 10.7 Yes

NH 3	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Actual	0.001	0.002	0.001	0.005	0.003	0.002	0.001	0.001	0.001	0.001	0.001	0.002
Comp. Y/N	Yes											

Page **7** of **10** \\nh-fileserver\USERS\kbruce\1-FILING SYSTEM\E Enviromental Services\E13 Water Monitoring\3-Wingham Sewage\E13 Wingham Wastewater 2024\Wingham Sewage Treatment Plant 2024 Annual Report.docx

Qu	a	rterly Meta	als	s Calculat	io	ns Report	2	024	
Parameter Date		Jan 2-24		Apr 9-24		July 2-24		Oct 8-24	Average
Total Solids		6700		12100		5530		5080	8110
TKN		368		612		204		224	395
NH 3&4		6.9		15.3		1.2		3	7.8
NO2	<	3	۷	3	۷	3	<	3	3.0
NO3	<	3	۷	3		9		16	5.0
NO2+NO3	<	3	۷	3		9		16	5.0
Arsenic	<	0.1		0.1	۷	0.1	<	0.1	0.1
Cadmium	<	0.005		0.006	۷	0.005	<	0.005	0.005
Cobalt		0.01		0.03		0.02		0.01	0.02
Chromium		0.35		0.51		0.34		0.32	0.4
Copper		3.1		4.6		3		2.2	3.6
Mercury		0.003		0.014		0.008		0.002	0.008
Potassium		24		42		22		18	29
Molybdenum	<	0.05		0.08	۷	0.05		0.05	0.06
Nickel		0.13		0.23		0.15		0.11	0.17
Phosphorous		140		220		130		83	163
Lead		0.1		0.2		0.1	<	0.1	0.1
Selenium	<	0.1	<	0.1	<	0.1	<	0.1	0.1
Zinc		2		5		3		2	3
Ecoli DW		656716		1818182		1916817		1496063	1463905
Ecoli /100 ml		440000		2200000		1060000		760000	1233333

Page 8 of 10 \\nh-fileserver\USERS\kbruce\1-FILING SYSTEM\E Enviromental Services\E13 Water Monitoring\3-Wingham Sewage\E13 Wingham Wastewater 2024\Wingham Sewage Treatment Plant 2024 Annual Report.docx

Table 1 BYPASS AND OVERFLOW EVENTS

		Thenan	1 30 00	5~								_	
		_		-			-	-		Its			
(dd/mm/yy)	Location	Type (see legend)	Start Time	Duration (hours)	Volume (1000m3)	M/E	Disinfection (Y/N)	Treatment (Y/N)	Reason Code*	BOD5 (mg/L)	SS (mg/L)	TP (mg/L)	E.Coli (/100ml)
<u>Legend</u>							*Reason Codes:			6 = Proc	ess		
PB = Primary	Bypass		M = Measured		Y = Yes		1 = Heavy Precip	itation	Upsets 7 = Power				
SB = Seconda STPO = Sewa	ry Bypass ge Treatme	nt Plant	E = Estimated		N = No		2 = Spring Runof	f	Outages 8 = Linknown				
Overflow	5						3 = Infiltration						
CSO = Combi	ned Sewer (Overflow				e	9 = Othe	r, please	commen	t below.			
SSO = Sanitar	y Sewer Ov	erflow					5 = Pipe Failures	(break/leak/plug	ged)				
STWO = Satel Overflow	lite Treatme	ent Works											
Comments:													

There were no Bypass or Overflow events in 2023

Report Completed by: Veolia Water Scott Gowan, Project Manager Veolia Water Canada, Inc. 130 Wallace St, PO Box 220, Walkerton On, NOG 2V0

Tel 519-881-1474 <u>scott.gowan@veolia.com</u> <u>https://www.veoliawatertechnologies.com/en</u>

Page **10** of **10** \\nh-fileserver\USERS\kbruce\1-FILING SYSTEM\E Enviromental Services\E13 Water Monitoring\3-Wingham Sewage\E13 Wingham Wastewater 2024\Wingham Sewage Treatment Plant 2024 Annual Report.docx